1. 메모리 구조


메모리는 크게 4개의 영역으로 나뉜다. 코드 영역, 스택 영역, 힙영역, 데이터 영역 이다.


1) 코드 영역 : 실행 명령어 저장

- 소스코드가 저장되는 영역으로, 실행할 명령어들이 순서대로 쌓인다.

- cpu가 이 영역에서 명령어들을 하나씩 가져다가 처리한다. (큐 구조)



2) 스택 영역 : 개발자가 제일 많이 사용하는 메모리는 스택 메모리 영역이다.  

- 스택이란 모든 원소들의 삽입 삭제를 한쪽 방향에서만 수행하도록 하는 선형 자료 구조이다.

- 이를 후입선출방식 (Last In First Out)이라 한다.

- 스택메모리는 지역변수와 매개변수같은 값들이 저장되는 공간이다.



void Test(int a)
{
    char b = 'A';
    int c = 1;
    double d = 3.14;
}

먼저 메모리에 int a 4바이트가 할당되고, char b 1byte, int c 4byte, double d 8 byte가 순서대로 할당되며 함수가 종료될때에는 거꾸로 메모리에서 제거된다. (d, c, b, a)



3) 힙 영역 : 개발자가 직접 할당

- 힙은 컴퓨터 메모리의 일부가 할당되었다가 회수되는 일들의 반복을 의미

- 합은 컴파일시가 아닌 실행 시 사용자로부터 할당 메모리를 입력 받음

- 생성과 삭제를 개발자가 직접 해줘야하는데, 삭제를 해주지 않으면 메모리 누수현상(메모리 릭)이 생긴다. 



4) 데이터 영역 : 전역 변수, 스태틱수 저장

- 전역 변수와 static변수가 저장되는 메모리이다.

- 프로그램 시작시 모든 전역변수와 static 변수가 데이터 영역에 저장되며, 프로그램이 종료시 메모리에서 소멸된다.






2. 동적 메모리 할당

1) 동적으로 메모리를 할당 하는 이유


일반적으로 변수는 컴파일타임에 할당된다. 

그렇다면 다음의 상황에서는 어떻게 될까?


Q. 전교생이 10명인 학교의 학생 수를 배열로 선언한다면?

A. int student[10];


Q. 학생수가 100명으로 늘어나게 되면?

A. int stduent[100];


학생수가 계속 유동적으로 변하게 된다면?

개발자가 그 상황에 맞게 계속 변수를 할당해줄 수 없다. 학생 수를 고정하지 말고 실행시 결정하자는 개념


int num;
fputs("학생수를 입력하세요 : ",stdout);
scanf("%d", &num);
int student[num];
문제점 
 - scanf는 런타임에 실행되지만 사용자가 값을 입력하는건 런타임이다. 
 - int student[num]은 컴파일타임에 실행된다. 런타임에 입력 받은 변수를 컴파일 타임에 대입하는 형태가 되기 때문에 컴파일 에러가 생긴다. 

 해결 방법

 - 실행 중에 학생 수를 알아야 하는 경우, 동적 메모리 할당 기법을 통해 문제 해결이 가능하다.





2) 메모리 할당 및 해제


malloc()

- 동적 메모리 할당 함수의 원형


void* malloc(size_t size);


- malloc 또는 말록이라고도 읽는다.

- 전달인자size는 바이트 단위로 입력한다.

- 메모리 할당이 되면 메모리의 주소값을 리턴한다.

- 메모리 부족 시 null 포인터 리턴한다.

- 리턴형이 void*인데, 타입이 지정되어 있지 않는 포인터를 리턴 한다.



free()

- 동적 메모리 해제 함수의 원형


void free(void* memblock);


- 메모리 사용후 반드시 해제 해야한다. (메모리 누수현상(메모리 릭)이 발생한다.)

- 전달인자로 메모리를 가리키는 포인터를 대입한다.



#include 
#include 

int main(void)
{
    int num;
    int* student);

    fputs("학생 수 입력 : ",stdout);
    scanf("%d", &num);
    student = (int*)malloc(sizeof((int)*num);

    if(student == null)
    {
        printf("메모리가 부족하가 부족하여 메모리를 할당 할 수 없습니다.\n");
        return 0;
    }

    printf("학당된 메모리의 크기는 %d 입니다. \n", sizeof((int)*num);
    free(student);

    return 0;
}



realloc()

- 실시간 메모리를 할당하여 사용한다 해도 사용중에 메모리 크기를 더 늘려야 하는 경우가 발생할 수 있다.

- malloc 함수로 할당된 메모리를 다시 동적으로 재할당해주는 함수가 realloc이다.




#include 
#include 

int main(void)
{
	int i;
	int *arr = (int*)malloc(sizeof(int) * 5);
	int *rearr; 

	for (i = 0; i < 5; i++)
	{
		arr[i] = i + 1;
	}
	rearr = (int*)realloc(arr, sizeof(int) * 10);
	for (i = 0; i < 10; i++)
	{
		rearr[i] = i + 1;
	}
	for (i = 0; i < 10; i++)
	{
		printf("%d\n", rearr[i]);
	}

	free(rearr);
	return 0;
}


calloc()

- malooc 함수와 똑같은 기능을 갖는다

- 전달인자의 형태와 조금 다른데, 메모리 개수와 자료형의 크기를 대입한다.


int* a = (int*)calloc(elt_count, elt_size);

int* a = (int*)malloc(size * sizeof(int));


#include <stdio.h>
#include <stdlib.h>

int main(void)
{
	int num, i, total = 0;
	int* student;

	fputs("학생 수 입력 : ", stdout);
	scanf("%d", &num);
	student = (int*)calloc(num, sizeof(int));

	if (student == NULL)
	{
		printf("메모리가 부족하가 부족하여 메모리를 할당할 수 없습니다.\n");
		return 0;
	}

	for (i = 0; i < num; i++)
	{
		printf("%d번째 학생의 성적 입력 : ", i + 1);
		scanf("%d", &student[i]);
	}
	for (i = 0; i < num; i++)
	{
		total += student[i];
	}
	printf("총점 : %d 평균 : %d \n", total, total / num);
	free(student);
	return 0;
}



memset()

- 메모리 블록에서 모든 바이트를 특정 값으로 설정 할 때 사용하는 초기화 함수


void* memset(void* dest, int c, size_t count)


#include <stdio.h>
#include <stdlib.h>
#include <memory.h>

int main(void)
{
	int* arr= (int*)malloc(sizeof(int) * 10);
	int i;
	
	printf("=========초기화 하기 전========= ");
	for (i = 0; i < 10; i++)
	{
		printf("%d\n", arr[i]);
	}
	memset(arr, 0, sizeof(int) * 10);
	printf("=========초기화 하기 후-======== ");
	for (i = 0; i < 10; i++)
	{
		printf("%d\n", arr[i]);
	}
	free(arr);
	return 0;
}


>



memcpy()

- 메모리를 복사하는 함수


void* memcpy(void* dest, void* src, size_t count);


#include <stdio.h>
#include <stdlib.h>
#include <memory.h>

int main(void)
{
	int* arr1 = (int*)malloc(sizeof(int) * 5);
	int arr2[5];
	int i;
	
	for (i = 0; i < 5; i++)
	{
		arr1[i] = i + 1;
	}
	memcpy(arr2, arr1, sizeof(int) * 5);
	for (i = 0; i < 5; i++)
	{
		printf("%d\n", arr2[i]);
	}
	free(arr1);
	return 0;
}


memcmp()

- 메모리를 비교하는 함수


void* memcmp(const void* ptr1, const void* ptr2, size_t num);


#include <stdio.h>
#include <string.h>

int main(void)
{
	int arr1[10] = { 1,2,3,4,5,6,7,8,9,10 };
	int arr2[10] = { 1,2,3,4,5 };
	
	if (memcmp(arr1, arr2, sizeof(int) * 5) == 0)
	{
		printf("arr 1 == arr2");
	}
	else
	{
		printf("arr 1 != arr2");
	}
	return 0;
}


'C' 카테고리의 다른 글

[C언어] 열거형 enum  (0) 2018.08.24
[C언어] 구조체와 공용체 (struct, union)  (0) 2018.08.24
c언어 배열  (0) 2018.07.22
C언어 산술, 관계, 논리연산자  (0) 2018.07.22
C언어 포인터의 크기와 데이터 타입  (1) 2018.07.14

열거형이란?

- 열거형은 enumeration의 약자로 enum(이넘)이라고 읽는다.

- 데이터들을 열거한 집합이다. 

- 컴파일러는 열거형 멤버들을 정수형 상수로 취급한다.




열거형의 사용법

- 키워드는 enum을 사용하여 정의한다.   

#include 

enum Week
{
	sun = 0,
	mon,
	tue,
	wed,
	thu,
	fri,
	sat
};

int main(void)
{
	int day;
	printf("요일을 입력하세요(1.일, 2.월, 3.화, 4.수, 5.목, 6.금, 7.토) : ");
	scanf("%d", &day);

	switch (day)
	{
	case sun:
		printf("sunday");
	case mon:
		printf("monday");
	case tue:
		printf("tueday");
	case wed:
		printf("weday");
	case thu:
		printf("thuday");
	case fri:
		printf("friday");
	case sat:
		printf("atday");
	default:
		printf("err");
	}
	return 0;
}


- 열거형의 멤버들은 각 요일을 나타낸다.

- 첫번째 멤버 sun을 0으로 설정하면 다음 멤버 mon은 각 1씩 증가한다.

1. 구조체란?

- 하나 이상의 서로 다른 종류의 변수들을 묶어서 새로운 자료형을 정의하는 것이다.



구조체를 사용하는 이유

- 연관된 변수들을 하나로 묶어서 관리함으로써 데이터 관리에 유용하다.

- 데이터의 양이 많아지면 궂체가 유리하다.

- 예를 들어 학생정보 관리 변수를 생성할때 이름, 나이, 성별 등의 정보들은 모두 변수로 선언하여 각각의 변수를 별도로 관리하면 연관성을 알 수가 없다. 



구조체 정의 방법

#include 
struct student
{
	char name[10];
	int age;
	int height;
};	// 구조체 정의

int main(void)
{
	struct student st1;	// 구조체 선언
	struct student st2;
}


- struct 키워드는 구조체라는 자료형을 의미

- student 는 만든 구조체의 이름

- name, age, height는 구조체 멤버 변수

- 구조체는 사용자가 정의한 새로운 자로형이다.



구조체 멤버 접근 방법

- 구조체 변수를 통해 구조체 멤버의 값을 참조해야 한다.

- 멤버에 접근시 . 콤마를 사용하는데, 이를 직접 접근이라 한다.


[구조체 변수명].[구조체 멤버]

ex) st1.name, st1.age, st1.height




2. 공용체란?

- 공용체도 사용자가 정의한 자료형이다

- 구조체와의 차이점은 메모리 공간을 공유한다는 점이다.


struct stTemp
{
	char a;
	int b;
	double c;
}st;


위와 같은 구조체가 있을때 메모리가 차지하는 용량은

a = 1byte, b = 4byte, c = 8byte 로 총 13byte가 메모리에 적재된다.

union unTemp
{
	char a;
	int b;
	double c;
}un;


위의 공용체와 같은 경우는 구조체와는 전혀 다른 메모리 적재방식이 적용된다.

제일 큰 멤버변수 double형 c가 8byte가 메모리에 적재되어 각각의 변수가 1회용으로 8byte 메모리안에 적재된다.

구조체는 멤버변수가 각각의 메모리 공간을 할당받고 있지만 공용체는 같은 메모리공간을 모든 변수가 공유하는 형태이다.


#include 

union unTemp
{
	char a;
	int b;
	double c;
}un;

int main(void)
{
	printf("문자형 a의 주소와 크기 : %x, %d\n", &un.a, sizeof(un.a));
	printf("정수형 b의 주소와 크기 : %x, %d\n", &un.a, sizeof(un.b));
	printf("실수형 c의 주소와 크기 : %x, %d\n", &un.a, sizeof(un.c));

	un.a = 'A';
	printf("문자형 a의 값 : %c\n", un.a);
	un.b = 100;
	printf("정수형 b의 값 : %d\n", un.b);
	un.c = 3.14;
	printf("실수형 c의 값 : %.2f\n", un.c);
	printf("문자형 a의 값 : %c\n", un.a);
	return 0;
}



- 시작 주소는 세 변수가 모두 같다.

- 예제의 마지막줄 a값을 다시 출력 시 쓰레기값이 출력된다. 

- 그 이유는 double형 8byte에 저장된 값은 3.14인데 그중 1byte의 값만 읽어와 출력하는것이니 쓰레기값이 출력된다.


공용체를 사용하는 이유

- 메모리 절약을 위해서

- 구조체는 각 가정의 화정실, 공용체는 공원의 공중 화장실이라 생각하면 된다. 


공용체 사용 시 유의 사항

- 공용체 멤버는 동시에 사용하게 되면 데이터가 별질될 우려가 있으므로 따로 따로 사용해야한다.




1. 배열의 선언과 사용

- 동일한 자료형을 저장할 저장공간이 많이 필요한 경우 일일이 변수를 선언하는것을 비효율적이다. 이때 배열을 사용하여 대체할수 있다.

배열을 사용하기 위해서는 선언을 먼저 해야한다. 배열의 선언은 간단하다. 요소의 자료형에 이름을 붙이고 필요한 요소 수를 표시한다.


int ary[5];


int = 요소 형태

ary = 배열명

[5] = 요소 개수


 

#include<stdio.h>


int main(void)

{

int ary[5];


ary[0] = 10;

ary[1] = 20;

ary[2] = ary[0] + ary[1];

scanf("%d", &ary[3]);


printf("%d\n", ary[2]);

printf("%d\n", ary[3]);

printf("%d\n", ary[4]);


return 0;

}


INT형 변수 5개를 하나씩 선언하는 것과 전체 저장 공간의 크기는 같다. 그러나 메모리할당되는 방식에는 차이가 있다. 변수를 선언하면 각 변수는 독립적인 저장공간을 갖고 각각의 이름으로 사용되는데

int a, b, c, d, e;
a(4byte), b(4byte), c(4byte), d(4byte), e(4byte)


반면에 배열은 저장공간이 연속으로 할당되어 배열명이 전체 공간의 이름이 된다.

int ary[5]; // 메모리 공간이 연속적으로 할당되며 이름은 하나다.

ary(20byte)


int형 변수의 크기가 4바이트이므로 5개를 연속으로 할당하면 총 20바이트를 할당된다. 배열의 나누어진 조각을 배열 요소라 하는데, 각각의 배열 요소는 int형 변수와 똑같이 쓰인다. 배열 요소는 배열명에 첨자(index)를 붙여 표현하며 첨자는 0부터 시작한다.


ary[0], ary[1], ary[2], ary[3], ary[4]



배열을 선언할 때와 배열 요소를 사용할때 대괄호 안의 숫자는 의미가 다른다. 선언할 때는 배열 요소의 전체 개수를 표시하며, 사용할 때는 각 요소가 ㅁ배열에서 몇 번째에 있는지 의미한다. 이값이 첨자며 첨자를 사용할 때는 다음 내용을 반드시 지켜야한다.


배열의 첨자는 0부터 시작하므로 최대 '배열 요소 수 -1'까지 사용가능하다. 

-> 배열의 ary 크기가 5일때 ary[5]를 사용하면? compile error

배열의 요소를 사용할때 첨자의 사용 범위를 벗어나면 그 결과를 예측할 수 없다. 배열에 할당된 영역을 벗어난 메모리를 사용하므로 침범함 영역이 어떤 용도에 사용되느냐에 따라 결과가 달라진다. 







2. 배열의 초기화

- 변수와 마찬가지로 배열도 최초 할당된 저장공간에는 쓰레기값이 있다. 배열이 선언과 동시에 원하는 값을 갖도록 하려면 초기화를 해야 한다.


배열은 중괄호로 묶어서 초기화한다.


단, 반드시 선언과 동시에 초기화해야하며, 선언하고 난 후에 값을 저장하려면 배열 요소에 하나씩 값을 대입해야한다.


int main(void)

{

int ary1[5] = { 1,2,3,4,5 };

int ary2[5] = { 1,2,3 };

int ary3[] = { 1,2,3 };

double ary4[5] = { 1.0, 2.0, 3.0, 4.0, 5.4 };

char ary5[5] = { 'a','b','c','d','e' };


ary1[0] = 10;

ary1[1] = 20;

ary1[2] = 30;

ary1[3] = 40;

ary1[4] = 50;


return 0;

}


초깃값은 첫 번째 요소부터 차례로 초기화된다. ary2의 경우 초깃값이 배열 요소 수보다 적은 경우인데 이대는 다음의 규칙을 따른다

왼쪽에서 차례로 초기화되고 남는 배열의 요소는 모두 0으로 채운다.

이런 자동초기화 기능을 사용하면 배욜 요소 수가 많아도 모든 요소를 쉽게 0으로 초기화 가능하다.







우선순위

종류 

연산자 

연산 방향 

 1

 1차 연산자

( ) [ ] . -> 

-> 

 2

 단항 연산자

 - + + - - ~ ! * & sizeof (type) 

<-

 3, 4

 산술 연산자

 * / % + -

 -> 

 5

 비트 이동 연산자

 << >>

 -> 

 6

 관계 연산자

 < <= > >=

 -> 

 7

 동등 연산자

== != 

 -> 

 8, 9, 10

 비트 논리 연산자 

& ^ | 

 -> 

 11, 12

 논리 연산자 

&& || 

 -> 

 13

 조건 연산자 

? : 

  -> 

 14

 대입 연산자 

= += -= *= /= %= &= ^= |= <<= >>= 

 <-

 15

 콤마 연산자 

 -> 

(연산자의 종류)



1. 연산자와 피연산자


- 프로그램은 CPU가 처리하는 명령들의 묶음이다. 일반적으로 연산자는 컴파일되면 명령어로 바뀌므로 연산자를 배우는 것은 결국 명령을 익히는것이다. 이든 연산 명령에는 연산의 대상이 되는 데이터가 필요한데 이를 피연산자라고 한다.


++a    10%3    (a>10)&&(a<20)


연산자는 보통 기능에 따라 분류되지만 피연사자의 개수에 따라 나눌수도 있다.

피연산자가 하나면 단항연산자, 2개면 이항연산자, 3개명 삼항연산자





2. 산술 연산자와 대입 연산자


- 산술 연산자는 +, -, *, /, %가 있는데 모두 2개의 피연산자를 사용한다. 이중 -연산자는 피연산자를 하나만 사용하여 그 부호를 바꾸는 연산자로도 쓰인다.


a = 10;    sum= a+b;


대입연산자 오른쪽의 변수는 값의 변화가 없고 왼쪽의 변수는 값이 바뀐다.


일반적으로 a와b같은 변수는 데이터를 저장하는 메모리(ram)에 존재하는 반면 연산은 CPU에서 이뤄진다. 연산할 때는 메모리에 있는 변수의 값을 CPU로 복사하여 사용하므로 아무리 많은 ㅇ녀산을 수행해도 피연산자 a, b값은 변하지 않는다. 반면 대입 연산을 수행한 sum, sub, mul, dnv의 값은 변하게 된다.





3. 나눗셈 연산자와 나머지 연산자


- 나눗셈에는 / 연산자를 사용한다. 나눗셈 연산자를 사용할 때는 피연산자의 형태에 따라 결과가 달라지니 주의해야한다.


나눗셈 연산자는 정수로 연산할 때 몫을 구하고 실수로 연산할 때는 소수점까지 구한다.


나눗셈 연산자의 이런 특징은 수학적 나눗셈을 기대한 경우 활당한 결과가 되겠지만 몫을 구할 때에는 유용하게 쓰인다. 반면에 몫은 뺀 나머지만을 구할 때는 나머지 연산자인 %기호를 사용한다. 실수 연산에는 나머지 개념이 없으므로 나머지 연산자의 피연산자로는 반드시 정수만을 사용한다.





4. 증감 연산자


증감 연산자는 단항 연산자를 피연산자의 값을 1증가시키거나 1감소시킨다.

증가시킬 때는 '++' 연산자를, 감소시킬 때는 '--' 연산자를 사용한다. 증감 연산자는 하나의 연산자로 대인 연산까지 수행하므로 변수의 값을 1씩 증가시키거나 감소시킬때 쉽게 표현할수 있다.


++a --a


증감 연산자는 특이하게도 ++a 뿐만 아니라 a++ 형태와 같이 사용할수있따. 피연산자의 앞에 놓이면 전위형, 뒤에 놓이면 후위형이라고 한다.


증감 연산식이 단독으로 사용된 경우엔 전위형과 후위형의 결과는 같다. 그러나 다른 연산자와 함께 쓰이면 다른 연산의 결과에 영향을 미친다. 

증감 연산자의 후위형은 다른 연산자와 함께 사용될 때 가장 나중에 연산된다.





5. 관계 연산자


관계 연산자에는 대소 관계 연산자와 동등 관계 연산자가 있다.


대소 관계는 < 또는 > 등의 기호를 사용하고, 동등 관계는 ==나 != 기호를 사용한다. 이들 연산자는 모두 피연산자를 2개 사용하며, 연산의 결과값은 1또는 0이 된다. 컴파일러는 0은거짓으로 -이 아닌 값은 참으로 판단하기에 관계식을 실행 조건 검사에 사용할수있다. 



관계 연산의 결과는 주로 판단의 근거로 사용된다.


예를 들어 a와 b값이 무엇인지 모르지만 둘 중에 큰값을 택한다면 a>b 연산을 수행항 ㅕ결곽밧을 확인하면 된다. 결과가 1이면 a가 b보다 크므로 a를 택하고 결과가 0이면 b가 크거나 최소한 같으므로 b를 택하면 된다. 





6. 논리 연산자


논리 연산자는 &&, ||, ! 세개이다.


&& 연산자는 2개의 피연산자가 모두 참일 때만 연산결과가 참이 되고 || 연산자는 둘 중에 하나라도 참이면 참이 된다. ! 연산자는 피연산자를 하나 사용하여 그 참과 거짓을 바꿀때 사용한다. 

'C' 카테고리의 다른 글

[C언어] 열거형 enum  (0) 2018.08.24
[C언어] 구조체와 공용체 (struct, union)  (0) 2018.08.24
c언어 배열  (0) 2018.07.22
C언어 포인터의 크기와 데이터 타입  (1) 2018.07.14
C언어 포인터 기초 개념  (0) 2018.07.14

포인터의 크기는 애플리케이션의 호환성과 다른 환경으로의 이식 가능성을 고민할때 문제가 된다. 최근에 널리 사용되는 대부분의 운영체제 환경에서 포인터의 크기는 일반적으로 포인터 타입에 상관없다. 예를 들면 char에대한 포인터는 구조체에 대한 포이터와 크기가 같다. C표준에서 모든 데이터 타입에 대한 포인터의 크기가 같아야 한다고 명시하고 있지는 않지만, 일반적으로 포인터의 크기는 동일하다. 하지만 함수에 대한 포인터와 데이터에 대한 포인터의 크기는 다를 수도 있다.



포인터의 크기는 사용하는 장비와 컴파일러에 따라 다르다. 예를 들어 윈도우버전에서 포인터의 크기는 32 또는 64bit이며 오래된 dos 그리고 왼도우 3.1 os에서 포인터는 16또는 32비트다.




1. 메모리 모델

- 64bit 컴퓨터 도입으로 C기본 데이터 타입의 메모리 크기 차이가 활실해졌다. 컴퓨터와 컴파일러들은 c 기본 데이터 타입의 메모리 할당을 위해 저 마다 다른 옵션의 메모리 모델을 가지고 있다. 이 메모리 모델들을 설명하기 위해 일반적으로 아래와 같은 표기법을 사용한다.



I In L Ln LL LLn P Pn



각 대문자는 정수(Integer), 롱(Long), 포인터(Pointer)에 해당하며, 각 소문자는 타입에 할당된 비트 수다. 


 C Data Type

LP64 

ILP64 

LLP64 

ILP32 

LP32 

char 

short

16 

16 

16 

16 

16 

__int32 

 

32 

 

 

 

int 

32 

64 

32 

32 

16 

long 

64 

64 

32 

32 

32 

long long 

 

 

64 

 

 

pointer 

64 

64 

64 

32 

32 




2. 사전 정의된 포인터 관련 데이터 타입

- 포인터를 다룰 때 다음 네가지의 사전 정의된 데이터 타입이 종종 사용된다


1) size_t -> 안전한 크기 타입 제공을 위해 사용

2) ptrdiff_t -> 포인터 연산을 처리하기 위해 사용

3) intptr->t와 uintptr_t -> 포인터 주소를 저장하기 위해 사용



3. size_t 타입에 이해

- size_t 타입은 c언어에서 임의의 객체가 가질 수 있는 최대 크기를 나타낸다. 크기를 표현하는데 음수의 사용은 의미가 없기 때문에 size_t는 부호 없느 ㄴ정수를 사용한다. size_t 타입을 사용하은 이유는 시스템에서 주소 지정이 가능한 메로리 영역과 일치하는 크기를 선언하는 이식 가능한 방법을 제공하기 위해서이다. 


malloc 함수와 strlen 함수가 size_t타입을 반환하는 인자로 사용되는 대표적인 함수이다. 일반적으로 32 system에서는 32bit, 64 system에서는 64bit이다. 



4. 포인터와 sizeof연산자 사용하기

- 포인터의 크기를 확인하는데 sizeof 연산자를 사용할 수 있다. 아래 코드는 char 포인터에 대한 크기를 출력한다.


printf("Size of *char: %d", sizeof(char*));


결과:

size of *char: 4


함수 포인터의 크기는 다를 수 있다. 보통의 주어진 환경의 운영체제와 컴파일러 조합에따라 결정된다 많은 컴파일러는 32비트나 64비트 애플리케이션 생성을 지원하며 같은 프로그램도 컴파일 옵션에 따라 다른 포인터 크기를 가진다. 



5. intptr_t uintptr_t 사용하기

- intptr_t와 uintptr_t 타입은 포인터의 주소를 저장하는데 사용된다. 이 두 타입은 다른 환경으로 이식이 가능하고 안전한 포인터 선언 방법을 제공하며, 시스템 내부에서 사용하는 포인터와 같은 크기다. 포인터를 정수 표현으로 변환할때 유용하게 사용할수 있다. 


uintptr_t타입은 intptr_t 타입의 부호 없는 버전에 해당된ㄷ. 대부분의 연산에서 intptr_t 타입을 사용하는 것이 좋으며, uintptr_t 타입은 intptr_t 타입만큼 유연하지 않고 사용이 제한적이다. 아래는 intptr_t 타입의 사용 방법을 보여준다.


int num;

intptr_t *pi = &num;


다음의 코드를 실행하면 문법 에러가 발생한다.


uintptr_t *pu = &num;


error: invalid converstio nfrom 'int*' to 'uintptr_t* {aka unsigned int*}'


위의 에러는 타입이 맞지 않아 생기는 에러이다. 캐스팅을 해주면 정상 할당된다.


uintptr_t *pu = (uinttpr_t *)&num;

'C' 카테고리의 다른 글

[C언어] 열거형 enum  (0) 2018.08.24
[C언어] 구조체와 공용체 (struct, union)  (0) 2018.08.24
c언어 배열  (0) 2018.07.22
C언어 산술, 관계, 논리연산자  (0) 2018.07.22
C언어 포인터 기초 개념  (0) 2018.07.14

포인터는 C언어 전반에 많은 영향을 미치며 언어 자체에 많은 유연함을 제공한다. 포인터는 동적 메모리 할당의 매우 중요한 부부이기도 하며, 배열의 표기법과 밀접한 관련이 있다. 


오랫동안 포인터는 C언어 학습에 걸림돌이 되었는데 포인터의 기본적이 개념은 매우 간단하다. 포인터는 메모리 위치의 주소를 저장하는 변수이다. 하지만 포인터 연산자를 사용하고, 암호와도 같은 난해한 표기법을 식별하려고 할 때부터 이 개념이 급격하게 복잡해진다. 포인터를 이해하는 열쇠는 C프로그램에서 메모리가 어떻게 관리되는지 이해하는데 있다. 포인터는 메모리의 주소를 담고 있기 때문에 메모리가 구성되고 관리되는 방법을 이해하지 못한다면 포인터의 동작 방식을 이해하기 쉽지 않다. 그렇기에 메모리의 구성 방법을 확실하게 이해하고 나면 포인터를 이해가기가 쉽다.


1. 포인터와 메모리

컴파일된 C 프로그램은 다음의 세 종류의 메모리를 사용한다.



1) 정적/전역

 - 정적(STATIC)으로 선언된 변수들은 정적/전역 메모리에 할당된다. 전역(GLOBAL)변수들 또한 같은 미모레이 할당된다. 정적/전역 변수들은 프로그램이 시작될 때 할당되며 프로그램이 종료될 때까지 메모리 공간에 남아 있다. 모든 함수에서 접그할 수 있는 전역 변수와는 달리 정적 변수의 접근 범위는 해당 변수를 선언한 함수로 제한된다.


2) 자동/로컬

 - 자동 변수는 함수 안에서 선언되고 함수가 호출될 때 생성된다. 자동 변수의 접근 범위는 선언된 함수로 제한되며, 함수가 호출되는 동안에만 존재한다. 일반적으로 블록문 안ㅅ에서 선언된 변수의 범위는 해당 블록을 ㅗ제한된다.


3) 동적

 - 동적메모리는 힙메모리 영역에 할당되고 필요한 경우 해제된다. 포인터를 사용하여 할당된 메모리 영역을 참조하며, 포인터의 의해 접근이 제한된다. 메모리를 해제하지 않는 한 메모리에 존재한다.


 

접근 범위 

수명 

전역(GLOBAL) 

전체파일 

어플리케이션 실행 동안 유지 

정적(STATIC)

선언된 함수 

어플리케이션 실행 동안 유지 

자동(LOCAL) 

선언된 함수 

함수 실행 동안 유지 

동적(DYNAMIC) 

참조하는 포인터 

메모리 해제 전까지 유지 



포인터 변수는 다른 병수 및 객체 또는 함수의 메모리상 주소를 포함하고 있다. 여기서 객채란, malloc 함수 같은 메모리 할당 함삼수를 사용하여 할당된 메모리를 말한다. 포인터는 일반적으로 문자 타입 포인터와 같이 포인터가 가리킬 대상에서 따라 특정 타입을 가지도록 선언되며 정수, 문자, 문자열 또는 구조체와 같은 어떠한 c 데이터 타입도 될 수 있다. 그러나 포인터 자체는 포인터가 참조하는 데이터 타입의 속성을 가지지 않는다. 포인터는 단지 주소만을 가지고 있다.




2. 포인터를 잘 알아야 하는 이유

  • 빠르고 효율적인 코드 작성
  • 다양한 문제에 대한 효과적인 해결 방법 제공
  • 동적 메모리 할당 지원
  • 작고 간결한 표현의 사용
  • 큰 오버헤드 없이 데이터 구조를 포인터로 전달
  • 함수의 매게변수로 전달된 데이터 보호



3. 포인터를 사용할때 발생할 수 있는 문제점

  • 배열이나 데이터 구조의 경계를 넘는 접근
  • 소멸한 자동/로컬 변수의 참조
  • 할당 해제된 힙 메모리의 참조
  • 아직 할당되지 않은 포인터에 대한 역참조


4. 포인터 선언하기
- 포인터 변수는 데이터 타입과 별표 그리고 변수 이름을 순서대로 나열하여 선언한다. 

 int num;
 int *pi;


별표는 변수를 포인터로 선언하는 데도 사용되지만 두 수를 곱하거나 포인터를 역참조하는데 사용 된다. 포인터를 선언하는데 있어 다음과 같은 사항을 기억 해둬야한다. 초기화 하지 않은 메모리에 대한 포인터는 문제가 될 수 있다. 그런 포인터를 역참조하면 포인터가 유효한 주소를 가리지 않을 것이고, 설령 유효한 주소를 가리킨다 하더라도 그 주오세는 유효한 데이터가 없을 가능성이 높다. 유효하지 않은 주소라는 것은 프로그램의 접근이 허용되지 않는 주소를 의미한다. 이러한 유효하지 않은 주소에 대한 접근은 프로그램의 비정상적 종료의 원인이 되는데 수많은 심각한 문제를 일으킬수 있다.
  • pi에는 정수 변수의 주소가 할당되어야 한다.
  • 이 변수들은 초기화되지 않았으므로 쓰레기값을 가진다.
  • 포인터 구현 자체에는 포인터가 어떤 종류의 데이터를 참조하는지 포인터의 내용이 유효한지를 추측할 만한 내용이 포함되어 있지 않다.
  • 그러나 포인터의 타입은 지정되어 있고 포인터가 올바르게 사용되지 않으면 컴파일러는 오류를 표시한다.



5. 포인터 선언을 읽는 방법

 - 포인터 선언을 이해하기 쉽게 읽는 방법의 비결은 뒤에서부터 읽는 것이다. 


 const int *pci;


1) const int *pci;    -> 포인터 변수 pci

2) const int *pci;    -> 정수를 가리키는 포인터 변수 pci

3) const int *pci;    -> 상수 정수를 가리키는 포인터 변수 pci



6. 주소 연산자

- 주소 연산자(&)는 변수의 주소를 반환한다. 아래와 같이 주소연산자를 사용하여 pi 포인터를 num 변수의 주소로 초기화할 수 있다.

 

 int num = 0;

 int *pi = &num;


num변수가 100번지에 위치하고 있다면 포인터 변수 pi가 가리키는 주소는 100번지가 된다.


 num = 0

 pi = num


위와 같은 코드를 컴파일 할경우 컴파일러는 'error: invalid conversion from 'int' to 'int*'와 같은 에러 메세지를 반환할것이다.

변수 pi는 정수형 포인터 변수이고 num은 정수형 변수이다. 결과적으로 num 이갖고 있는 0이라는 값을 정수형 포인터 변수에 초기화 하려고 하는 과정에서 에러가 난다. 두 변수는 같은 크기의 바이트를 사용하지만(4byte) 같은 데이터 타입이 아니다. 그러나 포인터로 캐스팅하는 것은 가능하다.


 pi = (int *)num;


컴파일 하면 오류는 생성되지 않는다. 다만 포인터 변수가 가리키는 0번지는 대부분 운영체제에서 프로그램이 사용할 수 있는 유요한 주소가 아니다. 그러기에 비정상 종료가 될것이다.



7. 포인터값 출력하기

- 위 예제에서 사용한 변수들은 쉬운 설명을 위해 100과 104 같은 주소를 사용하고 있다고 쳤지만 아래의 코드를 실행해보면 다음 과 같은 결과를 볼 수 있다.


int main()

{

int num = 0;

int *pi = &num;


printf("address of num: %d value: %d\n", &num, num);

printf("address of pi: %d value: %d\n", &pi, pi);


    return 0;

}


결과 : 

address of num: 7339564 value: 0

address of pi: 7339552 value: 7339564



8. 간접지정 연산자로 포인터 역참조하기

- 간접지정 연산자(*)는 포인터 변수가 가리키는 위치의 값을 반환하며 '참조 연산자로 포인터 값의 참조'는 종종 포인터 역참조라 불린다. 다음 예제는 변수 num과 pi가 선언되고 초기화 되었다.


 int num = 5;

 int *pi =&num;


그리고 다음 코드에서 변수 num의 값 5를 출력하기 위해 간접지정 연산자를 사용한다.


 printf("%d\n", *pi);


그리고 또한 좌변값에(lvalue)에 참조 연산자의 결과를 사용할 수 있다. 좌변값은 할당 연사자의 좌측에 위치한 피연산자를 말한다. 

 

 *pi = 200;

 printf("%d", num) // 200 출력


포인터 변수 pi가 가리키는 정수(num)에 200을 할당한다. pi는 변수 num을 가리키고 있으며, 200이 변수 num에 할당된다.



9. 함수 포인터

- 포인터는 함수를 가리키도록 선언될 수 있다. 함수포인터 선언은 일반적인 포인터 표기법에 비해 다소 복잡하다. 


 void (*foo)();


이름이 foo이며 매개변수와 반환값이 없는 함수포인터 선언방법을 보여준다.



10. void 포인터

- void 포인터는 어떤 타입의 데이터도 참조할 수 있는 범용 포인터다. 아래의 void 포인터 선언의 예제가 있다.

 

 void *pv;


void 포인터 선언에 두가지 흥미로운 점

  • void 포인터는 char 포인터와 같은 표현과 메모리 정렬 방법을 사용한다.
  • void 포인터는 다른 포인터와 절대 같지 않다. 하지만 NULL 값이 할당된 두 개의 void 포인터는 서로 같다. void 포인터의 실제 동작은 시스템에 따라 다른다.

모든 포인터는 void 포인터에 할당될 수 있으며, 할당된 포인터는 다시 원래의 타입으로 캐스팅하여 사용할 수있다. 원래의 타입으로 캐스팅이일어나면 포인터의 값은 기존 값과 같게된다. 


int main()

{

int num;

int *pi = &num;

printf("value of pi:pp", pi);

void* pv = pi;

pi = (int *)pv;

printf("value of pi:pp", pi);


return 0;

}


결과: 

value of pi:006FF874
value of pi:006FF874

void 포인터는 데이터 타입의 포인터에 사용되며, 함수 포인터에는 사용되지 않는다. void 포인터에 sizeof 연산자가 사용될 수있다. 그러나 void 자체에는 sizeof 연산자를 사용할 수 없다.

size_t size = sizeof(void*);  // 유효함
size_t size = sizeof(void)    // 유효하지 않음



'C' 카테고리의 다른 글

[C언어] 열거형 enum  (0) 2018.08.24
[C언어] 구조체와 공용체 (struct, union)  (0) 2018.08.24
c언어 배열  (0) 2018.07.22
C언어 산술, 관계, 논리연산자  (0) 2018.07.22
C언어 포인터의 크기와 데이터 타입  (1) 2018.07.14

+ Recent posts